
WRDC-TR-90-8007
Volume VIII
Part 25

AD-A248 932

INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)
Volume VIII - User Interface Subsystem
Part 25 - Application Generator User's Manual

DTIC
S. Barker ELECTE
Control Data Corporation - APR23 19920
Integration Technology Services
2970 Presidential Drive
Fairborn, OH 45324-6209 D

September 1990

Final Report for Period 1 April 1987 - 31 December 1990

Approved for Public Release; Distribution is Unlimited

MANUFACTURING TECHNOLOGY DIRECTORATE
WRIGHT RESEARCH AND DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533 92-10424

92 4 22 109 !1I1,,l1I{H111 f0I,

NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any obligation whatsoever, regardless
whether or not the government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data. It should not, therefore, be construed or implied
by any person, persons, or organization that the Government is licensing or conveying any
rights or permission to manufacture, use, or market any patented invention that may in any way
be related thereto.

This technica report has been reviewed and is approved for publication.
This report is releasable to the National Technical
Information service (NTIS). At NTIS, it Vill be

available to the general public, including foreign nations

DA D L. J S N, Pr ject Manager DATE

Wri ht-Pat rs AFB, OH 45433-6533

FOR THE COMMANDER:

BRUCE A. RASMUSSEN, Chief DATE y Y
WRDC/MTI
Wright-Patterson AFB, OH 45433-6533

If your address has changed, if you ', i:,h to be removed form our mailing list, or if the
addressee is no longer employed by your .ruanization please notify WRDC/MTI, Wright-
Patterson Air Force Base, OH 45433-653 --o help us maintain a current mailing list.

Copies of this report should not be rniurned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

Unclassified

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for Public Release;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution is Unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
UM 620344501 WRDC-TR- 90-8007 Vol. VIII, Part 25

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Control Data Corporation; (if applicable) WRDC/MTI
Integration Technology Services
6c. ADDRESS (CityState, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

2970 Presidential Drive
Fairborn, OH 45324-6209 WPAFB, OH 45433-6533

8a. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUM.
ORGANIZATION (if applicable)

Wright Research and Development Center, F33600-87-C-0464
Air Force Systems Command, USAF WRDC/MTI

10. SOURCE OF FUNDING NOS.
8c. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB, Ohio 45433-6533 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

1TITLE See block 19 78011F 595600 F95600 20950607

2. PERSONAL AUTHOR(S)
Structural Dynamics Research Corporation: Barker, S. , et al.

13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Yr.,Mo.,Day) 15. PAGE COUNT
Final Report 4/1 /87-12/31/90 1990 September 30 68

16. SUPPLEMENTARY NO.....

WRDC/MTI Project Priority 6203

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify block no.)

FIELD GROUP SUB GR.
1308 0 905

19. ABSTRACT (Continue on reverse if necessary and identify block number)

This document describes the syntax of the Application Definition Language (ADL).

BLOCK 11 :

INTEGRATED INFORMATION SUPPORT SYSTEM
Vol VIII - User Interface Subsystem

Part 25 - Application Generator Userts Manual

0. DISTRIBUTIONIAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

'NCLASSIFIED/UNLIMITED x SAME AS RPT. DTIC USERS Unclassified

2a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NO. 22c. OFFICE SYMBOL
(Include Area Code)

David L. Judson (513) 255-7371 WRDC/MTI

EDITION OF 1 JAN 73 IS OBSOLETE
DD FORM 1473,83 APR Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

UM 620344501
30 September 1990

FOREWORD

This technical report covers work performed under Air Force
Contract F33600-87-C-0464, DAPro Project. This contract is
sponsored by the Manufacturing Technology Directorate, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Bruce A.
Rasmussen, Branch Chief, Integration Technology Division,
Manufacturing Technology Directorate, through Mr. David L. Judson,
Project Manager. The Prime Contractor was Integration Technology
Services, Software Programs Division, of the Control Data
Corporation, Dayton, Ohio, under the direction of Mr. W. A.
Osborne. The DAPro Project Manager for Control Data Corporation
was Mr. Jimmy P. Maxwell.

The DAPro project was created to continue the development, test,
and demonstration of the Integrated Information Support System
(IISS). The IISS technology work comprises enhancements to IISS
software and the establishment and operation of IISS test bed
hardware and communications for developers and users.

The following list names the Control Data Corporation

subcontractors and their contributing activities:

SUBCONTRACTOR ROLE

Control Data Corporation Responsible for the overall Common
Data Model design development and
implementation, IISS integration and
test, and technology transfer of IISS.

D. Appleton Company Responsible for providing software
information services for the Common
Data Model and IDEFIX integration
methodology.

ONTEK Responsible for defining and testing a
representative integrated system base
in Artificial Intelligence techniques
to establish fitness for use.

Simpact Corporation Responsible for Communication
development.

Structural Dynamics Responsible for User Interfaces,
Research Corporation Virtual Terminal Interface,and Network

Transaction Manager design,
development, implementation, and
support.

Arizona State University Responsible for test bed operations
and support.

iii

UM 620344501
30 September 1990

TABLE OF CONTENTS

Page

SECTION 1. INTRODUCTION 1-1
1.1 Manual Objectives 1-1
1.2 Intended Audience 1-1
1.3 Related Documents 1-1

SECTION 2. DOCUMENTS 2-1
2.1 Reference Documents 2-1
2.2 Terms and Abbreviations 2-2

SECTION 3. APPLICATION DEFINITION LANGUAGE (ADL) 3-1
3.1 ADL Format Notation 3-1
3.2 Application Definition Language.............3-2
3.3 Application Definition Language Syntax 3-3
3.3.1 CREATE APPLICATION Statement 3-6
3.3.2 Parameter form id 3-8
3.3.3 KEYPAD Clause 3-8
3.3.4 Embedded C Code 3-9
3.3.5 ConditiIon n 3-9
3.3.5.1 Expression Parameter 3-10
3.3.5.2 Action Parameter 3-15
3.3.5.3 Value Parameter 3-20
3.3.5.4 SELECT Statement 3-21
3.3.5.4.1 Statistic Functions 3-26
3.3.5.4.2 ColSpec Parameter 3-27
3.3.5.4.3 Query Expression 3-28
3.3.5.4.4 Where Expression 3-31
3.4 Qualified Names 3-35

SECTION 4. HOW TO CREATE AN APPLICATION DEFINITION 4-1
4.1 Statement Format 4-1
4.2 Restrictions 4-1
4.3 Abbreviations 4-1
4.4 Including Comments 4-1
4.5 Reserved Words 4-1
4.6 How to Define a Report Application 4-2
4.6.1 A Simple One Page Report 4-
4.6.1.1 Specifying the Report Format 4-3
4.6.1.2 Retrieving the Database Information 4-5
4.6.2 The Multi-Page Report 4-5
4.6.2.1 Specifying the Multi-Page Report Format. 4-7
4.6.2.2 Paging the Report 4-8
4.6.2.3 Grouping Database Information 4-9
4.6.2.4 Using Nested SELECT Commands 4-9

SECTION 5. HIERARCHICAL REPORT WRITER 5-1
5.1 Defining a Hierarchical Report 5-2
5.2 Accessing the Hierarchical Report Writer ... 5-6

APPENDIX A. Steps For Executing The Rapid
Application Generator A-1

UM 620344501
30 September 1990

LIST OF ILLUSTRATIONS

Figure Page

4-1 Report Format 4-3
4-2 Structure of EMPDATA Table 4-3
4-3 Form Hierarchy for the Payroll Report 4-4
4-4 New Table Structure for EMPDATA 4-6
4-5 Format of Payroll Report from Combined Tables 4-6
4-6 Form Hierarchy for the Multi-Page Report 4-7
4-7 Table Structures for DEPTDATA and EMPDATA 4-10
5-1 Format of a Hierarchical Report 5-1
5-2 Format of an Assembly Hierarchy 5-2
5-3 Format of a Printed Hierarchical Report 5-3
5-4 Empdata Table 5-3
5-5 Format of the Initial Report 5-5

Accesion For

NTIS CRA&I

DTIO TAB [
Uraivuoun~ced [
Justification

B y
Dittib' dio:-, I

Avtiiiaboity Codes

VAva; a ,d J or

DitVPC3

UM 620344501
30 September 1990

SECTION 1

INTRODUCTION

The Rapid Application Generator (RAP) is a tool for
translating a textual definition of an interactive database
application or a report application into the C and COBOL
programs that are required to access selected data base
information resident in the Common Data Model (CDM). These data
are accessible through the Integrated Information Support System
(IISS) Neutral Data Manipulation Language (NDML). To generate
an application, you must first use the Application Definition
Language (ADL) to define the application. You then go through
several steps defined in Appendix A to generate the executable
application program from the application definition.

1.1 Manual Objectives

The main objective of this manual is to describe the syntax
of the ADL. Topics covered include:

o How to define an application.

o The syntax of the language.

o How to run the application generator and produce the
executable.

1.2 Intended Audience

The RAP is intended for use by application programmers in
the IISS environment. Knowledge of User Interface forms, the
CDM, and the Neutral Data Manipulation Language (NDML) is
assumed.

1.3 Related Documents

The Form Editor User Manual describes how to define the
User Interface forms. Information you should be familiar with
includes:

o item, form and window fields

o repeating fields

The Form Processor User Manual explains several concepts
you need to help you in defining and using forms for application
software. These include:

o form hierarchies

o qualified names

I-1

UM 620344501
30 September 1990

The Neutral Data Manipulation Language User Manual
describes the syntax of the NDML. This language provides the
capability of communicating with the IISS testbed databases.
You need to be familiar with the SELECT, DELETE, INSERT, and
MODIFY commands of the NDML.

1-2

UM 620344501
30 September 1990

SECTION 2

DOCUMENTS

2.1 Reference Documents

[E] Structural Dynamics Research Corporation, IISS
Application Generator Development Specifica7t--n, DS
620344502, 31 May 1988.

[2] Systran, ICAM Documentation Standards, 15 September
1983, IDS150120000C.

[3] Systran Corporation, Embedded NDML Programmer's
Reference Manual, PRM620341001, 31 May 1988.

[4] Systran, User's Manual for the ICAM Integrated Support
System (IISS) Neutral Data Manipulation Language
(NDML), February, 1983.

[5] Systran, Implementation of Enhancements of NDML SELECT
COMMAND, 25 July 1984, revised 9 September 1984.

[6] Systran, Discussion of Function Implementation NDML
SELECT COMMAND, 25 July 1984, revised 4 September
1984.

This manual is one of a set of user manuals that together
describe how to operate in the IISS environment. The complete
set consists of the following manuals listed here for reference:

[1] Structural Dynamics Research Corporation, IISS Form
Editor User Manual, UM 620344400, 31 May 1988.

Explains how to define and maintain electronic forms.
It is intended to be used by programmers writing
application programs that use the Form Processor.

[2] Structural Dynamics Research Corporation, IISS Form
Processor User Manual, UM 620344200, 31 May 1988.

Describes the set of callable execution time routines
available to an application program to process
electronic forms. It is intended to be used by
proqrammers writing application programs for the IISS
environment.

[3] Structural Dynamics Research Corporation, IISS
Terminal Operator Guide, OM 620344000, 31 May 1988.

Explains how to operate the generic IISS terminal when
running an IISS application program. The IISS end
user environment, function selection and some
predefined applications are also described.

2-1

UM 620344501
30 September 1990

[4] Structural Dynamics Research Corporation, IISS Text
Editor User Manual, UM 620344600, 31 May 1988.

Explains how to use the file editing functions
including: inserting, deleting, moving and replacing
text.

[5] Structural Dynamics Research Corporation, IISS
Application Generator User Manual, UM 620344502, 31
May 1988.

Describes the Application Definition Language and the
process used for translating textual definitions of
interactive database applications into programs that
access selected data base information resident in the
Common Data Model. This information is accessible
through the IISS Neutral Data Manipulation Language.

[6] Structural Dynamics Research Corporation, IISS Virtual
Terminal User Manual, UM 620344300, 31 May 1988.

Explains the program callable interface to the IISS
Virtual Terminal. The callable routines, Virtual
Terminal commands and the implementation of additional
terminals are described. It is intended for
application and system programmers working in the ISS
environment.

2.2 Terms and Abbreviations

Abbreviation id: A user-defined abbreviation of a database
table that may be used as a qualifier for a data item instead of
the table name itself.

Application Definition Language (ADL): A subset of the
Forms Definition Language (FDL) which provides for the
definition of interactive, form-based applications. ADL is part
of FDL. The statements are included in the same source file as
the form definitions.

Application id: A user-defined name which is used as the
root of the file name of the generated application.

Application Generator (AG): Subset of the IISS User
Interface that consists of software modules that generate IISS
application code and associated form definitions based on a
language input. The part of the AG that generates report
programs is called the Report Writer. The part of the AG that
generates interactive applications is called the Rapid
Application Generator.

Application Interface (AI): Subset of the IISS User
Interface that consists of the callable routines that are linked
with applications that use the Form Processor or Virtual
Terminal. The AI enables applications to be hosted on computers
other than the host of the User Interface.

2-2

UM 620344501
30 September 1990

Application Process (AP): A cohesive unit of software that
can be initiated as a unit to perform some function or
functions.

Attribute: A field characteristic such as blinking,
highlighted, black, etc. and various other combinations.
Background attributes are defined for forms and window fields
only. Foreground attributes are defined for item fields.
Attributes may be permanent (they remain the same unless changed
by the application program), or they may be temporary (they
remain in effect from the application's first call to OISCR
after a call to PUTATT or PUTBAK to the next call to OISCR).

Background Attribute: A color which is applied to the
background of forms, graphs, window fields, and item fields.
Specifying a background attribute is analogous to specifying
what color of paper to print a form, etc. on.

Bar Graph: A graph which represents dependent data values
correlated to an independent variable by horizontal or vertical
rectangles which are proportional to the dependent data values.

C Code: A user-defined sequence of C language statements
which are to be included in the generated application.

Common Data Model (CDM): IISS subsystem that describes
common data application process formats, form definitions, etc.
of the IISS and includes conceptua schema, external schemas,
internal schemas, and schema transformation operators.

Communication Services: Allows on host interprocess
communication and inter-host communication between the various
Test Bed subsystems.

Communication Subsystem (COMM): IISS subsystem that
provides communication services to the Test Bed and subsystems.

Computer Program Configuration Item (CPCI): An aggregation
of computer programs or any of their discrete portions, which
satisfies an end-use function.

Conceptual Schema (CS): The standard definition used for
all data in the CDM. It is based on IDEFI information
modeling.

Condition Action: An action to be taken wher a specified
condition is true.

Condition Definition: Specifies pre-defined actions that
will occur as the result of user interaction with the software
via the terminal.

Cursor Position: The position of the cursor after any
command is issued.

2-3

UM 620344501
30 September 1990

Dependent Data: Data correlated to a dependent variable.

Dependent Variable: A mathematical variable whose value is
determined by that of one or more other variables in a functin.

Device Drivers fDD): Software modules written to handle
I/O for a specific kind of terminal. The modules map terminal
specific commands and data to a neutral format. Device Drivers
are part of the UI Virtual Terminal.

Display List: A list of all the open forms that are
currently being processed by the Form Processor and the user.

External Schema (ES): An application's view of the CDM's
conceptual schema.

Field: An area on a form which is a place-holder for data.
A field may be an item, a form, a window, or a graph.

Field Name: A qualified name enclosed in single quotes
which denotes a field in the Form Processor display list.

Field Pointer: Indicates the ITEM which contains the
current cursor position.

Flag id: A user defined name which contains a boolean
valued state indicator which may be used in condition and set
expressions.

Foreground Attribute: A characteristic which is applied to
the text of a form, graph, or item. Specifying a background
attribute is similar to specifying what color of ink to use to
print a form on paper. Foreground attributes may also include
such characteristics as blinking, highlighted, etc.

Form: A structured view which may be imposed on windows or
other forms. A form is composed of fields. These fields may be
defined as forms, items, windows, and graphs.

Form Definition (FD): Form Definition Language after
compilation. It is read at run-time by the Form Processor.

Form Definition Language (FDL): The language in which
electronic forms and the reports and applications which interact
with them are defined.

Form Driven Form Editor (FDFE): Subset of the FE which
consists of a forms driven application used to create Form
Definition files interactively.

Form Editor (FE): Subset of the IISS User Interface that
is used to create definitions of forms. The FE consists of the
Forms Driven Form Editor and the Forms Language Compiler.

Form Field: A place-holder on a form for a sub-form which
is to be supplied in the form definition. A sub-form should
contain a group of logically related data. A form field is

2-4

UM 620344501
30 September 1990

static, that is, each time the form which contains the form
field appears, the same sub-form will be displayed in the form
field.

Form Hierarchy: A graphic representation of the way in
which forms, items and windows are related to their parent form.

Form id: A name which denotes a form specified in an FDL
file.

Form Processor (FP): Subset of the IISS User Interface
that consists of a set of callable execution time routines
available to an application program for form processing.

Form Processor Text Editor (FPTE): Subset of the Form
Processor that consists of software modules that provide text
editing capabilities to all users of applications that use the
Form Processor.

Forms Language Compiler (FLAN): A translator that accepts
a series of Forms Definition Language statements and produces
form definition files as output.

Graph: A picture correlated with data that alters as the
data changes; by necessity, this is a dynamic (not pre-defined)
picture. A graph may be imposed on windows or forms.

Graph Field: An area on a form into which a pre-defined
graph will be placed at run-time.

IISS Function Screen: The first screen that is displayed
after logon. It allows the user to specify the function he
wants to access and the device type and device name on which he
is working.

Integrated Information Support System: (IISS), a computing
environment used to investigate, demonstrate, test the concepts
and produce application for information management and
information integration in the context of Aerospace
Manufacturing. The IISS addresses the problems of integration
of data resident on heterogeneous data bases supported by
heterogeneous computers interconnected via a Local Area Network.

Independent Data: Data that is correlated to an
independent variable.

Independent Variable: A mathematical variable whose value
is specified first and determines the value of one or more other
values in an expression or function. For example, In a business
graph of sales versus month, month is the independent variable
and sales is the dependent variable, because sales varies by
month.

Item Field: A non-decomposable area of a form in which
text may be placed and the only defined areas where user data
may be input/output.

2-5

UM 620344501
30 September 1990

Item Name: A qualified name which denotes an item field.

Key id: A user-defined name for a function key which is
how the key is referenced within an ADL program.

Line Graph: A graph which represents dependent data values
correlated to an independent variable by points connected with a
broken line.

Logical Device: A conceptual device that identifies a top
level window of an application. It is used to distinguish
between multiple applications running simultaneously on a a
physical device. NOTE: a single application can have more than
one logical device. To the end user this also appears as
multiple applications running simultaneously.

Message: Descriptive text which may be returned in the
standard message line on the terminal screen. They are used to
warn of errors or provide other user information.

Message Line: A line on the terminal screen that is used
to display messages.

Network Transaction Manager jNTM): IISS subsystem that
performs the coordination, communication and housekeeping
functions required to integrate the Application Processes and
System Services resident on the various hosts into a cohesive
system.

Neutral Data Manipulation Language (NDML): The command
language by which the CDM is accessed for the purpose of
extracting, deleting, adding, or modifying data.

Open List: A list of all the forms that have been and and
are currently open for an application process.

Operand: A value which is operated on by some function.

Operating System (OS) Software supplied with a computer
which allows it to supervise its own operations and manage
access to hardware facilities such as memory and peripherals.

Operator: A mathematical or logical symbol denoting an
operatlon to be performed (e.g., +, -, /, *, etc.).

Page: An instance of a form in a window that is created
whenever a form is added to a window.

Paging and Scrolling: A method which allows a form to
contain more data than can be displayed at one time with
provisions for viewing any portion of the data buffer.

Physical Device: A hardware terminal.

Presentation Schema (PS): May be equivalent to a form. It
is the view presented to the user of the application.

2-6

UM 620344501
30 September 1990

Parameter form id: The name of a form which is to be
displayed when the application is started from the SDRC-UIMS
function screen and which allows the user to specify run-time
values for the application.

Pie Graph: A graph which represents data values on a
circle which is cut into sections by radii. Each section of the
circle represents a data value as a percentage of the total of
all the values represented by the graph.

Procedure id: The name of a user-supplied or system
service procedure which is to be called by the generated
application.

Primitive: The lowest level of definition for an
attribute. Primitives define the characteristics of an
attribute.

Qualified Name: The name of a form, item, window, or graph
preceded by the hierarchy path so that it is uniquely
identified.

Rapid Application Generator (RAP): A translator which
accepts ADL as input and generates an interactive application as
output.

Report Writer (RW): A translator which accepts ADL as
input and generates a report application as output.

Sub-form: A form that is used within another form.

Text Editor (TE): Subset of the IISS User Interface that
consists of a file editor that is based on the text editing
functions built into the Form Processor.

User Data: Data which is either input by the user or
output by the application programs to items.

User Interface UI): IISS subsystem that controls the
user's terminal and interfaces with the rest of the system. The
UI consists of two major subsystems: the User Interface
Development System (UIDS) and the User Interface Management
System (UIMS).

User Interface Development System (UIDS): Collection of
IISS User Interface subsystems that are used by applications
programmers as they develop IISS applications. The UIDS
includes the Form Editor and the Application Generator.

User Interface Management System (UIMS): The run-time UI.
It consists of the Form Processor, Virtual Terminal, Application
Interface, the User Interface Services and the Text Editor.

User Interface Monitor (UIM): Part of the Form Processor
that handles messaging between the NTM and the UI. It also
provides authorization checks and initiates applications.

2-7

UM 620344501
30 September 1990

User Interface Services (UIS): Subset of the IISS User
Interface that consists of a package of routines that aid users
in controlling their environment. It includes messaqe
management, change password, and application definition
services.

User Interface/Virtual Terminal Interface (UI/VTI):
Another name for the User Interface.

Virtual Terminal (VT): subset of the IISS User Interface
that performs the interfacing between different terminals and
the UI. This is done by defining a specific set of terminal
features and protocols which must be supported by the UI
software which constitutes the virtual terminal definition.
Specific terminals are then mapped against the virtual terminal
software by specific software modules written for each type of
real terminal supported.

Virtual Terminal Interface (VTI): The callable interface
to the VT.

Window: A dynamic area of a terminal screen on which
predefined forms may be placed at run-time.

Window Field: A place-holder on a form for sub-forms which
are to be supplied at run-time. A window field is dynamic, that
is, based upon data which may change, a different sub-form may
be placed in the window each time the containing form appears.

Window Manager: A facility which allows the following to
be manipulated: size and location of windows, the device on
which an application is running, the position of a form within a
window. It is part of the Form Processor.

Window Name: A qualified name which denotes a window.

2-8

UM 620344501
30 September 1990

SECTION 3

APPLICATION DEFINITION LANGUAGE (ADL)

The Application Definition Language (ADL) provides a
precise and flexible method for defining applications. It is an
extension of the Form Definition Language that allows you to:

o Define the interactive environment that the application
user will use to access the database (i.e., CDM data).

o Define the non-interactive environment necessary for
producing electronic or hard-copy reports.

o Retrieve, delete, insert and modify the data in the
database.

o Perform simple statistical calculations on the
information such as counts, sums, and averages as a
function of the NDML retrieval process.

3.1 ADL Format Notation

This manual uses the following notation to describe the
syntax of the ADL subset of Form Definition Language (FDL):

UPPER-CASE identifies reserved words that have specific
meanings in ADL. These words are generally
required unless the portion of the statement
containing them is itself optional.

lower-case identifies names, numbers, or character strings
that the user must supply.

Initial
upper-case identifies a statement or clause that is defined

later on.

Underscores identify reserved words or portions of reserved
words that are optional.

4 Braces enclosing vertically stacked options indicate
that one of the enclosed options is required.

[] Brackets indicate that the enclosed clause or option is
optional. When two or more options are
vertically stacked within the brackets, one or
none of them may be specified.

... Ellipsis indicates that the preceding statement or clause
may be repeated any number of times.

Single indicates that the literal representation of the
Quotes element's characters is to be used.

3-1

UM 620344501
30 September 1990

id a suffix which specifies an identifier.

name a suffix which specifies a qualified name.

string specifies a character string.

int specifies an integer.

real specifies a real number.

All other punctuation is to be considered part of the
language.

Application Definition

3.2 Application Definition Language

The Application Definition Language (ADL) subset of FDL
provides a precise and flexible method for defining
applications. ADL allows you to:

o Define the interactive environment that the application
user will use to access the database.

o Define the non-interactive environment necessary for
producing electronic or hard-copy reports.

o Retrieve, delete, insert and modify the data in the
database.

o Perform simple statistical calculations on the
information such as counts, sums, and averages as a
function of the NDML retrieval process.

The database interaction functions of ADL are designed for
use with relational databases. For this reason, a basic
understanding of relational database concepts is very helpful.
If you feel you need some background material on the subject
before reading further, the following are suggested. The
references are listed in order of the level of advance knowledge
necessary.

Martin, James, Computer Data-base Organization

This book is an excellent reference for those unfamiliar
with database concepts. Part 1 is a good introduction for
a new user.

S. Bing Yao, ed., Principles of Database Design, Volume I:
Logical Organizations

Chapter 6 specifically addresses relational databases.

Wiederhold, Gio, Database Design

Chapters 7, 8, 9, and 10 specifically address relational
databases.

3-2

UM 620344501
30 September 1990

Ullman, Jeffrey D, Principles of Database Systems

Chapters 2, 5, 6, 7, 8, and 9 specifically address
relational databases.

3.3 Application Definition Language Syntax

The collection of ADL statements that define an application
is an application definition. An application definition is
created by writing ADL statements directly to an ADL source file
with any text editor you might use to prepare a program source
file. The ADL source file is processed by the Rapid Application
Generator to produce an interactive application executable. The
Form and Condition definitions may be written in any order. The
complete ADL Syntax is listed in this section. Sections 3.3.1 -
3.3.5.4.4 contain a detailed explanation of the syntax by
statement and clause.

Application

(APPLICATION)
CREATE { } application id

(REPORT)

[(parameterform_id)]

KEYPAD({ keyid = int ...)

['%(' ccode '%)']

Condition ...

Condition

ON (Expression) 't' Action ...

Expression

string
item name
int -
flagid
Expression

- Expression
Expression I I Expression
Expression + Expression
Expression - Expression
Expression * Expression
Expression / Expression
Expression < Expression
Expression <= Expression
Expression = Expression
Expression != Expression
Expression > Expression

3-3

UM 620344501
30 September 1990

Expression >= Expression
Expression AND Expression
Expression OR Expression
NOT Expression
Expression ? Expression : Expression
INDEX(fieldname)
BETWEEN(Expression, Expression,

Expression)
IN(Expression, Expression,...)
GETATT(field name, type)
GPAGE(window-name)
GWINDO(window name, page)
APPEARS(field name)
CURSOR(field name)
ROLE(Expression)
PICK(Expression)
MODIFY(field-name)
STARTUP()
OVERFLOW(field name)
CHANGE(item name)
EMPTY(itemname)

Action

PAGE
EXIT
'%(' c code '%)'

SET item name = Expression
SIGNAL [NOT] flagid
Condition

PRESENT)
DISPLAY) [NOSELECT] form id [IN window-name]
REDISPLAY)

(string)
HELP (

(formid)

value
I PATH)

CALL procedure_id (INTEGER } itemname j,---!(REAL)

SELECT ['{' action ... '}']

INSERT INTO table_id (Colspec ...) VALUES (Value ...

MODIFY table id [abbreviation id]
USING (-tableid [abbrev1ationid]

SET (Colspec Value } ...
WHERE whereexpr

DELETE FROM table id [abbreviation id 3
[USING (table id [abbreviationid]) ,...]
WHERE where_expr

3-4

UM 620344501
30 September 1990

Value

string
int I

t real
itemname()

Select

SELECT (Statistic ([DISTINCT] item-name) .
FROM (queryexpr
[WHERE whereexpr]

SELECT [DISTINCT] itemname ...
FROM (queryexpr
[WHERE whereexpr]

(ASCENDING
[ORDER BY (item-name (4)...

(DESCENDING)

SELECT { Statistic ([DISTINCT] itemname = Col_spec) 4...
FROM (table_id [abbreviationid]-4 ,...

[WHERE whereexpr]

SELECT [DISTINCT] { item name = Col spec 4 ...

FROM { tableid [abbreviation_id 3 4 ...
[WHERE whereexpr]

(ASCENDING)
[ORDER BY{ Colspec {)...

(DESCENDING)

Statistic

MAXIMUM
MINIMUM
AVG

AVERAGE
SUM

(COUNT)

Col spec

F table id .

abbreviation id . columnid

3-5

UM 620344501
30 September 1990

Query expr

Queryexpr DIFFERENCE Queryexpr
Queryexpr INTERSECT Queryexpr
Queryexpr UNION Queryexpr
(Queryexpr)

SELECT { Statistic ([DISTINCT] Colspec) } ...
FROM (Query expr)
[WHERE Where expr]

SELECT DISTINCT Col_spec ...

FROM (Queryexpr)
[WHERE Whereexpr]

SELECT { Statistic ([DISTINCT] Col_spec) I ...
FROM { table id [abbreviationid]) ,...
[WHERE Whereexpr]

SELECT DISTINCT Col spec ...
FROM (table id [abbreviationid])
[WHERE Whereexpr]

Where expr

Where expr AND Where_expr
Where expr OR Where_expr
Where expr XOR Where_expr
NOT Where_expr
Where expr = Whereexpr
Where expr != Whereexpr
Where expr > Whereexpr
Whereexpr >= Whereexpr
Where expr < Whereexpr
Where expr <= Whereexpr
Where expr == Whereexpr
Col_spec IS [NOT] NULL
Col_spec [NOT] BETWEEN Value AND Value
Colspec
Value
(Whereexpr

CREATE APPLICATION Statement

3.3.1 CREATE APPLICATION Statement

Every application definition must begin with the CREATE
APPLICATION statement. This tells the compiler that what
follows is an application definition. If the keyword REPORT is
substituted for APPLICATION, then a report application is
defined instead of an interactive application. The syntax for
this statement is:

(APPLICATION
CREATE {) application id

(REPORT)

3-6

UM 620344501
30 September 1990

CREATE is the statement keyword.

REPORT is a keyword which specifies that you are
defining an output report (either
hardcopy or to the screen).

APPLICATION is a keyword which specifies that you are
creating an interactive application.
APPLICATION may be abbreviated AP.

applicationid is a unique name of up to 6 letters
and/or numbers associated with each
application or report. An
application name is required. The
application-name cannot begin with a
number. An application may have the same
name as any form in the application
definition. It is incorporated by the
Rapid Application Generator into the
Application name which is used to invoke
the executable at run-time. The exact
form of the Application name created is
system dependent and therefore the length
of application name may be further
restricted by the system you are running
on.

3-7

UM 620344501
30 September 1990

CREATE APPLICATION Statement, parameter form id

3.3.2 Parameter form id

A parameter form is specified when you wish to have certain
essential information entered before the application begins to
run (for example, certain parameters for a report you wish to
produce). A parameter form is defined, and when the user runs
SYSGEN to set up the UI database for the specific application,
the parameter form is added to the definition. The syntax for
specifying a parameter form is:

(parameterform id)

parameter form id is the qualified name of the form which you
wish to appear before the application begins
processing. Refer to section 3.4 for
further explanation of qualified names.

CREATE APPLICATION Statement, KEYPAD Clause

3.3.3 KEYPAD Clause

This clause allows you to give names to any of the
programmable function keys so that they are accessible to the
application. A keypad clause associated with a CREATE
APPLICATION statement overrides all KEYPAD clauses which are
associated with any of the forms accessed by the application.
Once a function name has been assigned to a key, that function
name is bound to that key, that is, it may not be applied to a
different key within the same application. It is possible to
apply more than one name to the same key. You may not apply the
same name to more than one key. The syntax for the KEYPAD
clause is:

KEYPAD({ keyid = int

KEYPAD is the clause keyword.

keyid is the name you choose to apply to the function
key. The name can be a maximum of 10 alphabetic
characters. You will use this name in ON PICK
condition statements to specify the key that
determines the action. The key-id = int phrase
may be repeated.

int is the number of the programmable function key.
int can be any number in the set (0, 4 through
20).

3-8

UM 620344501
30 September 1990

CREATE APPLICATION Statement, Embedded C Code

3.3.4 Embudded C Code

When functionality beyond that provided by FDL is required,
C Code can be embedded in the FDL source file in the following
manner. To signal the Rapid Application Generator that what
follows is C code, you enclose the code within the characters %(
and %} as follows:

'%{' C Code '%}'

You may then write the C code in the normal manner.

CREATE APPLICATION Statement, Condition

3.3.5 Condition Definition

The Condition portion of an application definition
specifies pre-defined actions that will occur as the result of
the evaluation of the specified expression as TRUE. The
expressions include evaluation of: cursor positioning, function
key selection, change of value in an item field, and the
occurrence of certain values in an item field. Some of the
possible pre-defined actions that can be triggered by a true
evaluation include: deletion of data in a table, insertion of
data into a table, modification of data in a table, and
selection of data from a table. The syntax for the Condition
is:

ON (Expression) '{' Action ... '1'

ON is the statement keyword.

Expression is a truth-valued mathematical or symbolic
statement which must evaluate to TRUE before the
specified Action will take place. The syntax for
the Expression parameter is contained in section
3.3.5.1 of this manual.

Action specifies the action(s) to be performed when the
specified condition evaluates to TRUE. The
syntax for the Action parameter is defined in
section 3.3.5.2 of this manual.

3-9

UM 620344501
30 September 1990

Condition Definition, Expression Parameter

3.3.5.1 Expression Parameter

The expression parameter is used with the VALUE clause to
specify the default value of a field, the APPEARS IF clause to
specify when a field appears on its containing form, or as a
condition definition to determine when to take a pre-defined
action. The syntax for expression is:

string
item name
int
flag_id
Expression

- Expression
Expression I I Expression
Expression + Expression
Expression - Expression
Expression * Expression
Expression / Expression
Expression < Expression
Expression <= Expression
Expression = Expression
Expression 1= Expression
Expression > Expression
Expression >= Expression
Expression AND Expression
Expression OR Expression
NOT Expression
Expression ? Expression : Expression
INDEX(fieldname)
BETWEEN(Expression, Expression,

Expression)
IN(Expression, Expression,...)
GETATT(field name, type)
GPAGE(window name)
GWINDO(window name, page)
APPEARS(field name)
CURSOR(field name)
ROLE(Expression)
PICK(Expression)
MODIFY(fieldname)
STARTUP()
OVERFLOW(fieldname)
CHANGE(item_name)
EMPTY(itemname)

3-10

UM 620344501
30 September 1990

Condition Definition, Expression Parameter

String is a character string enclosed in double quotes
("default value").

itemname is a qualified name enclosed in single quotes
('field') identifying an item field whose value
you want to use. (Refer to section 3.4 for a
further explanation of qualified names.)

int is an integer value.

flagid is a user-defined identifier which contains a
boolean valued state indicator which may be used
in condition and set expressions.

(Expression) specifies the use of parenthesis for grouping
when combining expressions.

- Expression specifies the negative of an expression as a
value.

NOT Expression specifies the logical negation of a boolean

expression.

Expression Binop Expression

specifies default values, appears if criterion,
and condition definitions as the result of
combining expressions using binary operators. In
many cases, these combinations are truth-valued
expressions with values of 1 or 0. The binary
operators are:

(II)
+

*

/

AND
OR

3-11

UM 620344501
30 September 1990

Condition Definition, Expression Parameter

These operators have the usual meanings and
precedences. The operator 11 is used for string
concatenation and has the same precedence as +
and -. Operands of the wrong type (i.e.,
character vs. integer) are automatically
converted.

Expression ? Expression : Expression

is a conditional assignment expression. If the
expression to the left of the ? evaluates to true
then the expression to the right of the ? is
evaluated. If it is false, then the expression
to the right of the : is evaluated.

INDEX (field_name)

specifies that the value is the name of the first
displayed element of the array "field name". The
array must be on the same form as field being
defined and must be enclosed in single quotes
(i.e., INDEX('myfield')). For example, if
"myfield" is a two dimensional array that has
been scrolled once horizontally and twice
vertically, INDEX('myfield') might return
"myfield(2,3)".

GETATT (field_name, type)

specifies the value as an item field's attribute.

GPAGE (field_name, page)

is specifying the value as the qualified name of
the form in a specified page of a window.

GWINDO (field_name)

is specifying the value as the number of pages in
a window.

APPEARS (field_name)

is a boolean expression that is true if the
specified field is displayed and false if the
field is not displayed.

3-12

UM 620344501
30 September 1990

Condition Definition, Expression Parameter

BETWEEN (Expression, Expression, Expression)

is a boolean expression that is true if the first
expression value is between the value of the
second and third expression values and false if
it is not.

CURSOR (field-name)

is a boolean expression that is true if the
cursor is in the specified field and false if it
is not.

IN (Expression, Expression, ...)

is a boolean expression that is true if the first
expression value is in the remaining set of
expression values.

ROLE (Expression)

is a boolean expression that is true if the role
of the current logged on user is the specified
value and false if it is not.

OVERFLOW (field_name)

allows you to specify one or more actions to be
performed when the size of a field is exceeded.
Field name is the prefix of an item which is the
target of a SELECT statement. A repeating field
can cause the overflow of its containing field by
repetition in either the horizontal or vertical
direction. You specify the name of the field
that causes the condition action to be triggered.
For example, a set of nested forms with a one row
repeating item field at the lowest level could be
output with interruptions at the line level or at
a higher level. This allows the application to
require that a sub-form be output either in its
entirety or not at all. OVERFLOW specifies that
one or more actions will occur if the size of a
named field is exceeded. Field name is the
qualified name of the field to be evaluated.

3-13

UM 620344501
30 September 1990

Condition Definition, Expression Parameter

CHANGE(item name)

allows you to define one or more actions to be
performed when the value of a named item field
changes. If the item field being tested for a
changing value contains database values, then it
may be appropriate for these values to have been
previously sorted so that all similar values are
grouped together. This sorting can be achieved
by using the "ORDER BY" option of the SELECT
statement (see section 3.3.5.4 in this manual).
If the test for a changing value is positive, the
actions are taken after the item field is
substituted with the changed value. CHANGE
specifies that one or more actions will be
performed when the value of a named item field
changes.

STARTUP () allows you to define one or more actions to be
performed at the beginning of the application.
This condition is required and should include as
one of its actions the presentation of an initial
form.

PICK (Expression)

allows you to define one or more actions to be
performed when the user presses a programmable
function key which you defined in the form
definition KEYPAD clause.

MODIFY(field_name)

allows you to define one or more actions to be
performed when the value of an item field or item
fields of a form are modified by the user. The
modify condition checks to see if the field has
been modified since the last function key pick.
The MODIFY condition is different from the CHANGE
condition. The CHANGE condition checks for
changes in an item field which has been targeted
by a select. The MODIFY condition checks for
user changes to an item or item fields of a form
between function key picks.

3-14

UM 620344501
30 September 1990

Condition Definition, Expression Parameter

EMPTY(item name)

is true if the select statement to the specified
item name returns zero rows from the database.

Condition Definition, Action Parameter

3.3.5.2 Action Parameter

Actions are to be taken when the specified ON condition is
true. The condition action syntax is:

PAGE
EXIT
'%{' c code '%}'
SET item name = Expression
SIGNAL [NOT] flagid
Condition

(PRESENT)
DISPLAY 4 [NOSELECT] form id [IN windowname]
REDISPLAY)

(string)
HELP {

formid

value
_ I (PATH

CALL procedureid ((INTEGER) itemname ,.'''
I REAL)[()

SELECT ['(' action ... '}'

INSERT INTO tableid (Colspec ...) VALUES (Value ...

MODIFY table id [abbreviation id]
[USING (tableid [abbrevation-id] ,
SET (Colspec = Value) ...
WHERE whereexpr

DELETE FROM table id [abbreviation id]
[USING (tableid [abbreviationid] ..
WHERE whereexpr

3-15

UM 620344501
30 September 1990

Condition Definition, Action Parameter

PAGE The PAGE action outputs the current display
list to the current logical device.

'%{' c code '%)' This allows the user to reference the
generated internal data structures and
perform specialized computations. Only
qualified name internal data structures
should be referenced to ensure the integrity
of the application. C code is inserted
directly into the FDL source file. The
characters %{ signal the start of the C
code and %) signals the end of the C code.

SET item-name = Expression

This action sets the value of a item to
another field or a specified expression.

EXIT This action terminates the application.

SIGNAL [NOT] flagid

This action allows the boolean valued state
information (flagid) to be set to true
(or false if the NOT option is used). Any
top level conditions using the flag id are
evaluated immediately following this action
and if true are executed. Upon termination
of the condition the state information is
set to false and flow of control continues
with the action following the SIGNAL.

Condition A condition (defined in section 3.3.5) can
be nested within another condition and used
as an action. Thus, the action of one true
condition is to evaluate another condition.
Nested conditions differ from top level
conditions in that they are evaluated if
their parent condition or action is
executed. They are evaluated in the order
they appear in the source file. References
to application state functions, STARTUP,
OVERFLOW, CHANGE, EMPTY, and to flagid does
not change the order of evaluation.

3-16

UM 620344501
30 September 1990

Condition Definition, Action Parameter

(PRESENT)
(DISPLAY } [NOSELECT) formid [IN windowname]
REDISPLAY)

The purpose of the PRESENT action is to
replace the current or top form in a window.
If there is no form in the window the form
is added. A form may be presented in
exactly one window.

The purpose of the DISPLAY action is to add
a form to the top of a window. A form may
be displayed in exactly one window.

The purpose of the REDISPLAY action is to
remove forms from a window until the
specified form is the current form in the
window. A form may be redisplayed in
exactly one window.

The secondary purpose of a PRESENT action is
to initiate or resume reading data from
selects which target to the presented form
or one of its subforms. Data reading may be
suppressed by using the NOSELECT option.

(string) The HELP action is used to display a messag
HELP { in the message line or display a help form.

(form id

[ATH value

CALL procedure id (INTEGER Iitem namejF.)
()

3-17

UM 620344501
30 September 1990

Condition Definition, Action Parameter

The purpose of the CALL action is to allow
the application to make calls to Form
Processor procedures, other system services,
or procedure written by the user in order to
perform specialized computations. The CALL
action invokes the procedure specified by
procedureid. The arguments are passed by
reference. Arguments may be a string,
integer, real, or a qualified name of an
item. Items default to data type character.
Items may be coerced to an integer or real
data type by using the type modifiers
INTEGER or REAL. The character string
representing the qualified name of the item
itself will be passed to the procedure if
the type modifier PATH is used.

INSERT INTO tableid (Colspec ...) VALUES (Value ...)

This action inserts data into the database
table. The values specified in the VALUE
clause will be inserted into the specified
column of the specified database table. The
syntax for the Value parameter is presented
in section 3.3.5.3.

DELETE FROM table 1 [abbreviation 1]
[USING (table_2 [abbreviation_2] } ,...
WHERE where expr

This action deletes data from the database
table. Table 1 is the full name of the
database table from which the data is to be
deleted. Abbreviation 1 allows you to
define an abbreviated name for the database
table. You may use this name to refer to
the table throughout the delete action.

The USING clause specifies the table(s)
referenced in the WHERE clause. These
tables will not be affected by the delete.
Table_2 specifies the name of the table(s)
referenced in the WHERE clause.
Abbreviation 2 allows you to specify an
abbreviated name for the table(s) referenced
in the WHERE clause.

3-18

UM 620344501
30 September 1990

Condition Definition, Action Parameter

The WHERE clause allows you to specify
criteria which determines which rows in the
FROM table_1 will be deleted.

Where expr specifies the criteria for the
delete. The syntax for the Where expression
is contained in section 3.3.5.4.4 of this
manual.

MODIFY table_1 [abbreviation 1
[USING f table_2 (abbreviation_2] } ,...

SET { Colspec = Value } ...
WHERE wherespec

This action modifies data in the database
table specified by table_1.
Abbreviation_1 allows you to define an
abbreviated name for the database table.
You may use this name to refer to the table
throughout the modify action.

The USING clause allows you to specify the
table(s) which are referenced in the WHERE
clause. Those tables referenced by the
WHERE clause will not be affected by the
MODIFY. Table 2 is the full name of the
table referenced in the WHERE clause.
Abbreviation 2 allows the specification of
an abbreviated name to refer to the table
referenced in the WHERE clause.

SET is a keyword which allows you to set the
specified column equal to the value
specified. Colspec is the name of the
database column you wish to modify. The
syntax for col spec is listed in section
3.3.5.4.2 of this manual. Value specifies
the value which is to be mapped to the
column specified by colspec. The syntax
for the Value parameter is listed in section
3.3.5.3 of this manual.

3-19

UM 620344501
30 September 1990

Condition Definition, Action Parameter

The WHERE clause allows you to specify
criteria which determine which rows of the
MODIFY table_1 are to be changed.

where expr specifies the criteria required for the
modify. The syntax for the Where expression
is listed in section 3.3.5.4.4 of this
manual.

Value Parameter

3.3.5.3 Value Parameter

The Value parameter is used to specify specific values to
be used as arguments in the CALL action, to be inserted into a
database table, or placed into a database table via the MODIFY
action. The syntax for the Value parameter is:

string
int
real
itemname

string specifies a character string enclosed in double

quotes (" ").

int specifies an integer.

real specifies a real number.

item-name is the qualified name of an item whose value is
to be referenced.

3-20

UM 620344501
30 September 1990

Condition Definition, SELECT

3.3.5.4 SELECT Statement

The SELECT statement is used to retrieve information from
either a database table or from the set of data which results
from a previous SELECT. There are several different options so
that the SELECT may be customized to meet the specific needs of
the user. The syntax for the SELECT statement is:

SELECT (Statistic ([DISTINCT] item_name)
FROM (queryexpr)
[WHERE whereexpr]

SELECT [DISTINCT] itemname ...
FROM (query expr)
[WHERE whereexpr 3

(ASCENDING)
[ORDER BY (itemname{) ...]

(DESCENDING)

SELECT { Statistic ([DISTINCT] item name = Colspec) 4...
FROM (table id [abbreviationid] ,...
[WHERE whereexpr]

SELECT [DISTINCT 3 { item name = Col spec } ...

FROM { table id [abbreviation_id] } ,...
[WHERE whereexpr]

(ASCENDING)
[ORDER BY { Col_spec { 11.--]

(DESCENDING)

Each SELECT option shall be addressed separately. The
first option to be addressed is:

SELECT { Statistic ([DISTINCT] item-name) } ...
FROM (queryexpr)
[WHERE where_expr 3

This option is chosen when you wish to perform a statistic
function on the set of data resulting from set operators in the
query expression and return the resulting value into the item
specified by the qualified name item name. For example, a
possible use of this option would be:

SELECT MAXIMUM('forma.salary')
FROM (SELECT DISTINCT employees.salary

FROM employees emp
WHERE emp.job = "programmer")

3-21

UM 620344501
30 September 1990

Condition Definition, SELECT

This example chooses all unique salary columns from the
employees database table where the job column in the same row
holds the value "programmer". It then chooses the maximum
salary from among the columns selected and places that value
into the item specified by the qualified name 'forma.salary'.

Statistic is a statistical function to be performed on the
values resulting from the select. The statistic
functions are listed in section 3.3.5.4.1 of this
manual.

DISTINCT is a keyword used to specify that duplicate
rows are to be ignored. Item name is the
qualified name which specifies the item to
receive the resulting value.

item-name is the qualified name of the item into which the
result of the statistic function is to be placed.
Qualified names are discussed in section
3.4 of this manual.

FROM is a keyword which specifies that what follows is
an expression which determines where the data is
selected. The syntax for the Query expression is
listed in section 3.3.5.4.3 of this manual.

WHERE is a keyword which specifies a condition which
must be true in order for the select to take
place. The syntax for the Where expression is
listed in section 3.3.5.4.4 of this manual.

The second option is:

SELECT [DISTINCT] itemname ...
FROM (queryexpr)
[WHERE where_expr]

ASCENDING)
[ORDER BY(item-name } } ...

DESCENDING)

3-22

UM 620344501
30 September 1990

Condition Definition, SELECT

This option allows you to SELECT a set of data from the table(s)
specified by the nested selects in the queryexpression and sort
the resulting set of data by a specific item-name. An example
usage of this option is:

SELECT DISTINCT 'forma.salary(0)'
FROM (SELECT DISTINCT employees.salary

FROM employees emp
WHERE emp.job = "programmer")

ORDER BY 'forma.salary' ASCENDING

This example chooses all unique salary columns from the
employees database table where the job column in the same row
holds the value "programmer". It then places the resulting
values into the item array specified by the qualified name
'forma.salary(0)' and then sorts 'forma.salary(0)' in ascending
order.

DISTINCT is a keyword used to specify that duplicate
rows are to be ignored.

Item name is the qualitied name which specifies the item to
receive the resulting value. Qualified names are
discussed in section 3.4 of this manual.

FROM is a keyword which specifies that what follows is
an expression which determines where the data is
selected. The svntax for the Query expression is
listed in section 3.3.5.4.3 of 'his manual.

WHERE is a keyword which specifies a condition which
must be true in order for the select to take
place. The syntax for the Where expression is
listed in section 3.3.5.4.4 of this manual.

ORDER BY are keywords which specify that the results of
the select are to be sorted. ASCENDING and
DESCENDING are keywords to specify the order in
which to sort the values.

The third option is:

SELECT (Statistic ([DISTINCT] item name = Col-spec))...
FROM { table id [abbreviation id]-) ,...
[WHERE where_expr]

3-23

UM 620344501
30 September 1990

Condition Definition, SELECT

This option is very similar to the first option discussed. The
difference is that the first option included the use of nested
SELECTs to choose the database table(s). This optio" selects
directly from a database table. For example, you miyLt choose
to use this select:

SELECT MAXIMUM(DISTINCT 'forma.salary' = employees.salary')
FROM employees emp
WHERE emp.job = "programmer"

This example chooses all unique salary columns from the
employees database table where the job column in the same row
holds the value "programmer". It then chooses the maximum
salary from among the columns selected and places that value
into the item specified by the qualified name 'forma.salary'.

statistic is a statistical function to be performed on
the values resulting from the select. The
statistic functions are listed in section
3.3.5.3 of this manual.

DISTINCT is a keyword used to specify that duplicate
rows are to be ignored.

Item-name is the qualified name which specifies the
item to receive the resulting value.
Qualified names are discussed in section
3.4 of this manual.

Col spec is the full name of the column of the
database table from which to select the
data. The syntax for colspec is listed in
section 3.3.5.4.2 of this manual.

FROM is a keyword which specifies that what
follows are tables the data are to L-e
selected from.

table id is the name of the database table from which
to select the data.

abbreviation id is a method of abbreviating the name of the
database table. Once an abbreviation id has
been assigned to a table, the table may be
referred to by that abbreviation for the
duration of the select.

3-24

UM 620344501
30 September 1990

Condition Definition, SELECT

WHERE is a keyword which specifies a condition
which must be true in order for the select
to take place. The syntax for the Where
expression is listed in section 3.3.5.4.4 of
this manual.

The final SELECT option to be discussed is:

SELECT [DISTINCT] { item name = Colspec } ...
FROM (table id [abbreviation id]),...
[WHERE where_expr 3

(ASCENDING
[ORDER BY (Colspec { I .

(DESCENDING

This option is very similar to the second option discussed. The
difference is that this option does not use nested selects; it
selects directly from the database table. For example:

SELECT DISTINCT 'forma.salary(0)' = employees.salary
FROM employees emp
WHERE emp.job = "programmer"
ORDER BY emp.salary DESCENDING

This example chooses all unique salary columns from the
employees database table where the job column in the same row
holds the value "programmer". It then sorts the columns in
descending order and places the values in the item array
specified by the qualified name 'forma.salary(0)'.

DISTINCT is a keyword used to specify that duplicate
rows are to be ignored.

Itemname is the qualified name which specifies the
item to receive the resulting value.
Qualified names are discussed in section
3.4 of this manual.

Col_spec is the full name of the column of the
database table from which to select the
data. The syntax for col_spec is listed in
section 3.3.5.4.2 of this manual.

FROM is a keyword which specifies that what
follows are tables the data are to be
selected from.

3-25

UM 620344501
30 September 1990

Condition Definition, SELECT

Table id is the name of the database table from which
to select the data.

Abbreviation id is a method of abbreviating the name of the
database table. Once an abbreviation id has
been assigned to a table, the table may be
referred to by that abbreviation for the
duration of the select.

WHERE is a keyword which specifies a condition
which must be true in order for the select
to take place. The syntax for thr Where
expression is listed in section -,.3.5.4.4 of
this manual.

ORDER BY are keywords which specify that the results
of the select are to be sorted. ASCENDING
and DESCENDING are keywords to specify the
order in which to sort the values.

Statistic Functions

3.3.5.4.1 Statistic Functions

The following statistic functions are provided for use with
the SELECT statement:

MAXIMUM
MINIMUM

AVERAGE

(COUNT

MAXIMUM The maximum value returned by the SELECT is placed in
the item specified by the qualified name item name. A
discussion of qualified names appears in section
3.4 of this manual. MAXIMUM may be abbreviated MAX.

MINIMUM The minimum value returned by the SELECT is placed in
the item specified by the qualified name item name. A
discussion of qualified names appears in section
3.4 of this manual. MINIMUM may be abbreviated MIN.

AVERAGE all of the values returned by the SELECT statement are
totaled and divided by the number of non-null
occurrences. This number is placed in the item
specified by the qualified name item-name. AVERAGE
may be abbreviated AVG. A discussion of qualified
names appears in section 3.4 of this manual.

3-26

UM 620344501
30 September 1990

SUM all of the values returned by the SELECT statement are
totaled and this number is placed in the item
specified by the qualified name itemname. A
discussion of qualified names appears in section
3.4 of this manual.

COUNT the number of values returned by the SELECT statement
is placed in the item specified by the qualified name
item name. A discussion of qualified names appears in
section 3.4 of this manual.

Col-spec Parameter

3.3.5.4.2 Col spec Parameter

A col spec is the full name of the column in the specified
table which contains the value which is to be operated upon.
The syntax for a col_spec is:

[table id .] column id
[abbreviationid .]

table id is the name of the table which contains the
column.

abbreviation id is an abbreviated name for the table which
was specified previous to using the
abbreviation.

is used to separate the column name from the
table name or abbreviation.

column id is the name of the column in the table.

3-27

UM 620344501
30 September 1990

Query Expression

3.3.5.4.3 Query Expression

A query expression is an expression which allows the user
to specify where the application is to select the data from.
Query expressions are used to enable the user to specify set
operators, that is, a select within a select. Query expressions
are recursive. The syntax for queryexpression is:

Queryexpr DIFFERENCE Queryexpr
Queryexpr INTERSECT Queryexpr
Queryexpr UNION Queryexpr
(Queryexpr)

SELECT { Statistic ([DISTINCT] Colspec) } ...
FROM (Queryexpr)
[WHERE Whereexpr]

SELECT DISTINCT Col_spec ...
FROM (Queryexpr)
F WHERE Whereexpr]

SELECT { Statistic ([DISTINCT] Col spec) } ...
FROM { tableid [abbreviation id] } ,...
[WHERE Where expr]

SELECT DISTINCT Colspec ...
FROM { tableid [abbreviation id]4,...
[WHERE Whereexpr]

Queryexpr DIFFERENCE Queryexpr

specifies that any two of the SELECT statements
below may be executed. A DIFFERENCE function is
then performed on the results of the two SELECTs.
This means that the results of query 1 are
compared to the results of query 2. The rows
which were returned by query 1 but NOT returned
by query 2 are called the DIFFERENCE. For
example, If query 1 returned A, B, and C, and
query 2 returned C, D, and E, taking the
DIFFERENCE of the queries returns A and B.

3-28

UM 620344501
30 September 1990

Query Expression

Queryexpr INTERSECT Queryexpr

specifies that any two of the SELECT statements
below may be executed. An INTERSECT function is
then performed on the results of the two SELECTs.
This means that the results of query 1 are
intersected with the results of query 2. The
rows which were returned by query 1 AND query 2
are called the INTERSECTION. For example, if
query 1 returned A, B, and C, and query 2
returned C, D, and E, the INTERSECTION of the two
returns C.

Queryexpr UNION Queryexpr

specifies that any two of the SELECT statements
below may be executed. An UNION function is then
performed on the results of the two SELECTs.
This means that the results of query 1 are
unioned with the results of query 2. All of the
rows which were returned by both of the queries
minus the duplicate rows are called the UNION.
For example, if query 1 returned A, B, and C, and
query 2 returned C, D, and E, the UNION of the
two returns A, B, C, D, and E.

Queryexpr)

indicates that parentheses may be used to group
queryexpressions.

The following SELECTs function just as those described in
section 3.3.5.4 of this manual. The difference is that these
statements specify the Column Specification directly instead of
depending upon a nested SELECT to perform that function. The
query expression always specifies a SELECT which is subordinate
to the SELECT which specified the query expression.

3-29

UM 620344501
30 September 1990

Query Expression

SELECT { Statistic ([DISTINCT] Colspec) } ...
FROM (Queryexpr)
[WHERE Where_expr]

in this case, the query expression in the FROM
clause returns a set of rows from the specified
table(s). Then the SELECT statement selects
specific column(s) out of the set of rows. The
selected columns are passed back to the
containing SELECT statement (one of those
described in section 3.3.5.4) which performs a
specified statistical function (described in
section 3.3.5.4.1 of this manual).

SELECT DISTINCT Col_spec ...
FROM (Queryexpr
[WHERE Where_expr]

in this case, the query expression in the FROM
clause returns a set of rows from the specified
table(s). Then the SELECT statement selects
specific column(s) out of the set of rows. The
selected columns are passed back to the
containing SELECT statement (one of those
described in section 3.3.5.4) which selects
further.

SELECT (Statistic ([DISTINCT] Col spec)) ...
FROM { table id [abbreviation_id] } ,...
WHERE Where_expr]

this option SELECTs data directly from the
specified table and column, performs a
statistical function (described in section
3.3.5.4.1 of this manual) on the result.

SELECT DISTINCT Col spec ...
FROM (table id [abbreviation_id]) ,...

WHERE Where_expr]

this option SELECTs data directly from the
specified table and column.

3-30

UM 620344501
30 September 1990

Where Expression

3.3.5.4.4 Where Expression

The where expression is used to specify the circumstances
under which a piece of data is to be retrieved. A SELECT
statement retrieves data from database table rows where the
condition(s) specified in the WHERE clause are true. Where
expressions can be recursive. The most basic where expressions
are Col spec and Value. It is generally not useful to specify
either Col spec or Value alone. They are intended to be
specified in combination with each other and with specific
binary operators. The syntax for a Where expression is:

Where expr AND Where_expr
Where expr OR Where_expr
Where expr XOR Whereexpr
NOT Whereexpr
Where expr = Whereexpr
Where expr != Whereexpr
Where expr > Whereexpr
Where expr >= Whereexpr
Where expr < Whereexpr
Where expr <= Whereexpr
Where expr == Whereexpr
Col_spec IS [NOT] NULL
Col_spec [NOT] BETWEEN Value AND Value
Colspec
Value
((Where_expr)

Where expr AND Where_expr

This where expression specifies that the criteria
specified by BOTH where expressions must be TRUE
for a row of data in order for it to be selected.
An example is:

WHERE emp.salary > 10000 AND emp.job = "clerk"

In order for a row of data to be selected, the
salary column of that row must have a value
greater than 10000 AND the job column must have
the value "clerk".

3-31

UM 620344501
30 September 1990

Where Expression

Where expr OR Where_expr

This where expression specifies that the criteria
specified by either one or BOTH of the where
expressions must be TRUE for a row of data in
order for it to be selected. For example:

WHERE emp.salary > 10000 OR emp.job = "clerk"

In order for a row of data to be selected, either
the salary column of that row must have a value
greater than 10000 OR the job column must have
the value "clerk". If both are true, the
expression is considered true.

Where expr XOR Where_expr

This where expression specifies that the criteria
specified by either one of the where expressions
but not both must be TRUE for a row of data in
order for it to be selected. An example is:

WHERE emp.salary > 10000 XOR emp.job = "clerk"

In order for a row of data to be selected, either
the salary column of that row must have a value
greater than 10001 OR the job column must have
the value "clerk". If both are true, the
expression is considered false.

NOT Where_expr

This where expression specifies that the logical
negation of the criteria specified by the where
expression must be true for a row of data in
order for it to be selected. For example:

WHERE NOT emp.salary > 10000

In order for a row of data to be selected, the
value contained in the salary column of that row
must not be greater than 10000.

3-32

UM 620344501
30 September 1990

Where Expression

The following expressions depend upon binary operators.
These operators have the usual meanings and precedences. An
example will be given for each.

Wherc-expr = Where expr

Example:

WHERE emp.salary 10000

Where expr != Whereexpr

Example:

WHERE emp.salary 10000

Where expr > Whereexpr

Example:

WHERE emp.salary > 10000

Where expr >= Whereexpr

Example:

WHERE emp.salary >= 10000

Where expr < Whereexpr

Example:

WHERE emp.salary < 10000

Where expr <= Whereexpr

Example:

WHERE emp.salary <= 10000

3-33

UM 620344501
30 September 1990

Where Expression

Where expr Whereexpr

Example:

WHERE emp.dept_no == dept.dept_no

Colspec IS [NOT] NULL

This where expression allows you to check for
NULL (empty) columns. For example:

emp.salary IS NULL

allows you to select rows where the salary column
is empty.

emp.salary IS NOT NULL

allows you to select rows where the salary column
is not empty.

Colspec [NOT] BETWEEN Value AND Value

This where expression allows you to check to see
if the value contained in a column falls within a
specific range. For example:

emp.salary BETWEEN 10000 AND 17500

You might also use this expression to select for
rows which fall outside of a specific range.
For example:

emp.salary NOT BETWEEN 15000 and 25000

Col spec

The column specification is used in combination
with other where expressions to form compound
expressions. In all of the previous examples,
emp.salary is a column specification. The syntax
for Col spec is contained in section 3.3.5.4.2 of
this manual.

3-34

UM 620344501
30 September 1990

Where Expression

Value

Value is used in combination with other where
expressions to form compound where expressions.
In the previous examples, 10000, 15000, "clerk",
etc. are examples of Values. The syntax for
the Value expression is contained in section
3.3.5.3 of this manual.

(Whereexpr

This expression uses parentheses to change the
precedence of where expressions.

Qualified Names

3.4 Qualified Names

Qualified names are used to refer to Form Processor fields.
they are enclosed in single quotes (' '). Qualified names may
refer only to those fields contained in the source file. Forms
referenced in qualified names must also be presented at some
point in the application.

Two symbolic array indices are available. The use of a
symbolic index implies a control flow structure loop and at
application run-time the symbolic index is replaced with an
actual value. The part of the qualified name which prefixes a
symbolic index has scope from that condition or action to all
nested conditions and actions inclusive. Scope rules are based
on an upper-case comparison of the symbolic index prefix.

The syntax for the universal ("for all") quantifier index
is an asterisk * (e.g., 'myarray(*)'). This means all elements
of the array will be used sequentially in the condition or
action.

The "for each" quantifier index is a zero (e.g.,
'myarray(0)'). This symbolic index is normally used in a
qualified name which is the target of a SELECT action, or a
condition or action which is nested in the SELECT. For each row
retrieved by the select the current index is accessed in the
qualified name.

3-35

UM 620344501
30 September 1990

SECTION 4

HOW TO CREATE AN APPLICATION DEFINITION

You create an application definition by writing ADL

statements directly to a text file using any text editor.

4.1 Statement Format

ADL statements can be entered in free format. Free format
means that keywords and numbers can be separated by any number
of spaces. The compiler treats tabs, comments, and carriage
returns as spaces.

Application definition statements may be in any order.

Form field names used in the application definition syntax
are pseudo qualified names in the form hierarchy. They are
denoted by strings of the following type: 'form.item'. The
single quotes are required. (Refer to section 3.4 for more
information on qualified names).

4.2 Restrictions

Every application definition must begin with the CREATE
APPLICATION or CREATE REPORT statement.

There must be at least one space before and after every
keyword in the syntax.

4.3 Abbreviations

Underscores in the ADL syntax indicate reserved words or
portions of reserved words that are optional.

4.4 Including Comments

You can include comments in an application definition by
enclosing the comment text between /* and */ . Comments are
treated as spaces by the ADL compiler. For example:

CREATE APPLICATION appll /* inventory application */

4.5 Reserved Words

This is an alphabetized list of the reserved words in the
Application Definition Language subset of FDL.

ABOVE ABS ABSOLUTE
ADD ADDITIVE ALL
AND AP APPEARS
APPLICATION AS ASC

4-1

UM 620344501
30 September 1990

ASCENDING ASSIGN AT
ATTRIBUTE AVERAGE AVG
AXIS BACKGROUND BAR
BELOW BETWEEN BOTTOM
BOX BY CALL
CENTER CHANGE CNT
COL COND CONDITIONAL
COLOR COLUMN COUNT
CURVE DELETE DESC
DESCENDING DIFFERENCE DISPLAY
DISTINCT DOMAIN END
ENTER EVERY EXIT
EXPLODE FILL FINE
FONT FORM FREQ
FROM GRAPH GRID
H HELP HORIZONTAL
IF IN INSERT
INSIDE INTEGER INTERSECT
INTO IS ITEM
KEY KEYPAD LABEL
LEFT LEGEND LINE
LINEAR LINE TYPE LINE WIDTH
LOG LOWER MARKER
MAX MAXIMUM MIN
MINIMUM MODIFY MUST
NILL NODUP NOSELECT
NOT NULL NUM
NUMERIC OF ON
OR ORDER OUTSIDE
OVERFLOW PAGE PATH
PATTERN PERCENT PIC
PICTURE PIE PRESENT
PROMPT QUANTITY REAL
REDISPLAY RELATIVE REPORT
RIGHT ROW SCALE
SELECT SET SHADE
SIGNAL SIZE SPACE
SPACES START STARTUP
STYLE SUM SUMMARY
SYMBOL SYMBOLFREQUENCY TICK
TO TOP UNION
UPPER UPVECTOR USING
V VALUE VALUES
VERSUS VERTICAL WHERE
WINDOW WITH XOR

4.6 How to Define A Report Application

This section explains how to use the ADL to define a
report. -irst, the simple case of a one page report using a
one table aatabase is described. The simple case is then
expanded to a report that contains more than one page and a
database that contains two tables.

4-2

UM 620344501
30 September 1990

4.6.1 A Simple One Page Report

Your company requires each department to produce an
employee payroll report. The format of the report is shown in
Figure 4-1. The employee data is stored in the database table
EMPDATA. The structure of the table is shown in Figure 4-2.

DEPARTMENT PAYROLL REPORT

"Deptname" Department

MONTHLY ANNUAL
EMPNO NAME SALARY COMM COMPENSATION

XXXXX Name $9999.99 $9999.99 $99,999.99

Figure 4-1 Report Format

EMPDATA

--------------- +---------+------------------------
I Name I Salary I Comm I Compen I Empno
----------------- +---------------------

* Denotes Key Field

Figure 4-2 Structure of EMPDATA Table

4.6.1.1 Specifying the Report Format

You specify the report format using form definitions.
Report forms are similar to electronic forms in that they can
contain item and form fields. To determine how to define these
torms, you need to think of the report as it will appear in its
final form (i.e., after it has been produced on the output
medium). Ask the questions:

o What information appears only once?

o What information is repeated?

o Does any of the information repeat in groups?

With the answers to these questions, you will be able to develop
a form hierarchy for your report. The form hierarchy for the
Payroll Report is shown in Figure 4-3.

4-3

UM 620344501
30 September 1990

I Dept
+ - _-- +

+ - --- +

1Empdata *

+------------------------+-------------------- ---------------------

III II
-------- + -------- + --- +---+ +-------+ ------ +
I Empno I I Name I ISalary I I Comm I lCompen I

+------------------ --------- +----------- +----------- +----------

++ +---------

Key: I form I I item I* = repeating
+-+ +

Figure 4-3 Form Hierarchy for the Payroll Report

The form Dept represents the finished report. The titles,
headings, and other formatting characters are defined as prompts
since they only appear once. The employee data is defined as
the repeating form field Empdata on Dept. Empdata will be
repeated for every record in the database table. The form
Empdata contains the item fields to display the actual database
information for each employee. The FDL source for this portion
of the report definition is:

CREATE REPORT Payroll
CREATE FORM Dept

SIZE 80 by 23
PROMPT center at 2 40 "DEPARTMENT PAYROLL REPORT"
PROMPT at 4 20

PROMPT center at 6 40 "SALES DEPARTMENT"
PROMPT at 8 20

g* *** ** * *** ** * * **************************"*

PROMPT at 10 10 "EMPNO"
PROMPT at 10 21 "NAME"
PROMPT at 10 33 "MONTHLY"
PROMPT at 10 43 "COMM"
PROMPT at 10 54 "ANNUAL"
PROMPT at 11 33 "SALARY"
PROMPT at 11 54 "COMPENSATION"
PROMPT at 12 10 "----- --

PROMPT at 12 16 "---------------
PROMPT at 12 33 "-"--------
PROMPT at 12 43 "-"--------
PROMPT at 12 54 "-----------
FORM Empdata (* v 0) at 14 9 SIZE 55 by 1

CREATE FORM Empdata
ITEM Empno at 1 2

DISPLAY AS text
DOMAIN (pic "99999")

4-4

UM 620344501
30 September 1990

ITEM Name at 1 13
DISPLAY AS text SIZE 15 by 1

ITEM Salary at 1 25
DISPLAY AS text
DOMAIN (pic "$9999v99")

ITEM Comm at 1 35
DISPLAY AS text
DOMAIN (pic "$9999v99")

ITEM Compen at 1 46
DISPLAY AS text
DOMAIN (pic "$99,999v99")

4.6.1.2 Retrieving the Database Information

You retrieve the database information using NDML SELECT
commands. Selection of data takes place as a result of a
Condition statement. First you must specify the Condition which
in this case is STARTUP. Then you write the select statement
specifying the item fields on the form Empdata as the fields
that receive the data retrieved by the SELECT. Because Empdata
is a repeating form, you must use the subscript (0) to indicate
the current occurrence of the form. You must also specify that
the form must be presented with a Present statement. The FDL
source for this portion of the report definition is:

ON (STARTUP()){
SELECT 'dept.empdata(0).empno' = Empno

'dept.empdata(0).name' = Name
'dept.empdata(0).salary' = Salary
'dept.empdata(0).comm' = Comm
'dept.empdata(0).compen' = Compen
FROM Empdata
ORDER BY Empno

PRESENT Dept
Page)

NOTE: Qualified names must be enclosed in single quotes.
If a name is qualified by a repeating form, that form name must
end with the subscript 0 as shown above in
'dept.empdata(0).empno'. This specifies the first occurrence of
the repeating form.

This SELECT will make the employee data available as needed
by the repeating form Empdata.

4.6.2 The Multi-Page Report

The previous example suggests that the employee data for
each department is in a separate table. These separate
tables could be combined into one table by changing the
structure of EMPDATA. The new structure of the EMPDATA table is
shown in Figure 4-4. From the one table you can now generate
one report that is formatted as shown in Figure 4-5. Items that
have been added to the previous example are shown in bold.

4-5

UM 620344501
30 September 1990

EMPDATA

+-------------------+---------+------------+---------+-----------------------
Deptno I Deptname IName ISalary I Comm ICompen I Empno

--------------- +-------------+---------------------

**Denotes Key Field

Figure 4-4 New Table Structure for EMPDATA

****************************** Page 1
DEPTNO: XXX -- DEPTNAME: "DEPT"

MONTHLY ANNUAL
EMPNO NAME SALARY Comm COMPENSATION

XXXXX Name $9999.99 $9999.99 $99,999.99

****************************** Page 2
DEPTNO: XXX -- DEPTNAME: "DEPT"

MONTHLY ANNUAL
EMPNO NAME SALARY Comm COMPENSATION

XXXXX Name $9999.99 $9999.99 $99,999.99

±---

Figure 4-5 Format of Payroll Report from Combined Tables

4-6

UM 620344501
30 September 1990

4.6.2.1 Specifying the Multi-Page Report Format

The form hierarchy for this report is little changed from
the previous example because most of the additions are achieved
using ON Conditions. The new Payroll Report form hierarchy is
shown in Figure 4-6.

+ -

Dept
+ - + +

+----------------------+----+---------------------------

+- .+---+ +---+- + +- . ------ + - -+- - +
Pageno I I Deptno I I Deptname I I Empdata I*

---------- ---------- ----------- + -- - +

---- +---------------------------------------

+---+----+ +---+---+ +---+----+ +---+---+ +-------+
I Empno I I Name I ISalary I I Comm I lCompen I

+----------- +----------- ----------- ----------- +----------

+ - - - - + ----------
Key: I form I I item I* = repeating

+-+ +----------------

Figure 4-6 Form Hierarchy for the Multi-Page Report

This report now contains data for more than one department
and it may contain more than one page. To accommodate this, the
item fields Deptno, Deptname and Pageno are added to the form
Dept. In order for the employee information to overflow on the
form Dept, Dept must be a fixed size form. Empdata will be
repeated on Dept for every employee in that department. The FDL
source for this portion of the report definition is:

4-7

UM 620344501
30 September 1990

CREATE REPORT Payroll
CREATE FORM Dept SIZE 80 by 23

ITEM Pageno at 1 70 VALUE '._PAGENO'
PROMPT at 5 20

DISPLAY AS text
PROMPT AT left "Page"

PROMPT at 1 20

ITEM Deptno at 3 27
DISPLAY AS text
DOMAIN (pic "999")

PROMPT at LEFT "DEPTNO: "
ITEM Deptname at 3 42

DISPLAY AS text
PROMPT at LEFT "- - DEPTNAME: "
PROMPT at 7 10 "EMPNO"
PROMPT at 10 21 "NAME"
PROMPT at 10 33 "MONTHLY"
PROMPT at 10 43 "COMM"
PROMPT at 10 54 "ANNUAL"
PROMPT at 11 33 "SALARY"
PROMPT at 11 54 "COMPENSATION"
PROMPT at 12 10 "----- -

PROMPT at 12 16 "---------------
PROMPT at 12 33 "-----------
PROMPT at 12 43 "-----------
PROMPT at 12 54 "-----------
FORM Empdata (* v) at 14 9 SIZE 55 by 1

CREATE FORM Empdata
ITEM Empno at 1 2

DISPLAY AS text
DOMAIN (pic "99999")

ITEM Name at 1 13
DISPLAY AS text SIZE 15 by 1

ITEM Salary at 1 25
DISPLAY AS text
DOMAIN (pic "$9999v99")

ITEM Comm at 1 35
DISPLAY AS text
DOMAIN (pic "$9999v99")

ITEM Compen at 1 46
DISPLAY AS text
DOMAIN (pic "$99,999v99")

4.6.2.2 Paging the Report

To page the report you define an ON OVERFLOW condition.
This allows the overflow of one item or form, on an item or a
form that is higher in the form hierarchy, to trigger a
specified action. In this case, the action you want to occur is
paging. For this report, you want the overflow of the form
Empdata to trigger a new page. Because Empdata is a repeating
form, you use the subscript (0) to indicate the current
occurrence of the form. You must also specify that the form

4-8

UM 620344501
30 September 1990

Dept will be presented on the top of the new page to provide the
headings to the Empdata information. The FDL source for this
portion of the report definition is:

ON (OVERFLOW ('dept. Empdata(0)'){
PAGE
PRESENT Dept)

The item field Pageno on the form Dept is given the value
'. _PAGENO'. This value is incremented by 1 every time paging
occurs.

4.6.2.3 Grouping Database Information

The payroll information on this report needs to be grouped
by department. This is done by defining an ON CHANGE condition.
An ON CHANGE condition allows the change in an item field value
to trigger an action or group of actions. For this report,
whenever the value of the item field Deptno changes, there
should be a page eject and the form Dept should be repeated for
the next department. This ON CHANGE condition allows each
department to start on a new page. The FDL source for this
portion of the report definition is:

ON (CHANGE ('dept.deptno'))
{
PAGE
PRESENT Dept)

This condition implies that the database information is
sorted by department number. This is accomplished by using the
ORDER BY option of the SELECT command. The FDL source for this
portion of the report definition is:

ON (STARTUP()

SELECT 'dept.deptno' = Deptno
'dept.deptname' = Deptname
'dept.empno' = Empno
'dept.name' = Name
'dept.salary' = Salary
'dept.comm' = Comm
'dept.compen' = Compen

FROM Empdata
ORDER BY Empdata.Deptno Empdata.Empno
Present Dept
PAGE

4.6.2.4 Using Nested SELECT Commands

The database for the Combined Payroll Report could contain
two separate tables. The structures of these tables is shown in
Figure 4-7.

4-9

UM 620344501
30 September 1990

DEPTDATA

+--------+----------------
Deptno I Deptname I

++--------+-------------

EMPDATA

+------------+-------------+---------+------------------------
Deptno I Name I Salary I Comm I Compen I Empno

-------------------- ------------

*** Denotes Key Field

Figure 4-7 Table Structures for DEPTDATA and EMPDATA

These two tables have a "one to many" relationship. This
means that for every record in DEPTDATA, there are several
records in EMPDATA. This database configuration maps to the
relationship between the Dept and Empdata forms in the form
hierarchy. By retrieving the information from the database
using nested SELECT commands, the data will be presented as
defined by the form hierarchy. The FDL source for this portion
of the report definition is:

SELECT 'dept.deptno' = Deptno
'dept.deptname' = Deptname

FROM Deptdata
ORDER BY Deptdata.Deptno
(

SELECT 'dept.empdata(0).empno' = Empno
'dept.empdata(0).name' = Name
'dept.empdata(0).salary' = Salary
'dept.empdata(0).comm' = Comm
'dept.empdata(0).compen' = Compen

FROM Empdata
WHERE Empdata.Deptno = 'Deptno'
ORDER BY Empdata.Empno

Data retrieval and data presentation go hand in hand and
are not independent of one another. The nested selects acquire
the data in the proper way. The nesting means that the data in
the inner loop(s) are periodically exhausted thus stopping the
occurrence of the form(s) using that data (e.q., Empdata).
Without the nested SELECT, Empdata would continue repeating
whether or not Empdata.Deptno matched Deptdata.Deptno.

4-10

UM 620344501
30 September 1990

SECTION 5

HIERARCHICAL REPORT WRITER

A hierarchical report consists of a set of boxes which are
connected into a tree structure. The Hierarchical Report Writer
can be used to produce two types of hierarchical reports:

o A true hierarchy such as is shown in an organization
chart for a management structure where each employee has
a single manager.

o A network hierarchy such as a parts list where one part
may be used in different assemblies which in turn are
part of a single larger assembly.

The Hierarchical Report Writer is a post-processor which
takes a report generated by the Application Generator and
rearranges it into an appropriate tree structure. The data to
be displayed can be either a true hierarchy where each box
appears only once (as shown in Figure 5-1), or a network where a
box may appear more than once (as shown in Figure 5-2). The
boxes appearing below a box are referred to as its expansion.

1JOHNSON I

+------------
+-----------+-------------------

-------------- --------------
JADAMS I IGREENE I
-------- - --- -----------

+---------------I

IBROWN I ISMITH I -DAVIS I
------------- + ------------- + ------------- +

Figure 5-1 Format of a Hierarchical Report

5-1

UM 620344501
30 September 1990

When a network is displayed, the expansion of an item is
only displayed below the first occurrence of the box. If the
report is paged, the page number of the expansion is displayed
below subsequent occurrences of the item. If the report is not
paged, then a 11*11 is displayed in place of the expansion. This
is illustrated in Figure 5-2 where "PART I" occurs twice.

+--------------
I ASSEMBLY I

+-----------------

+--------- ------------------

+- ----- ----------

I PART 1 1 1 PART 1 1
.--- +----------------

+----------------1

------------ -- +----------
I PART 2 I I PART 3 1
---------------- +---------------

Figure 5-2 Format of an Assembly Hierarchy

5.1 Defining a Hierarchical Report

A Hierarchical Report contains a separate page for each box
in the hierarchy. A single page contains the graphic represent-
ation of the box, the name of the box, and the names of the
boxes which are to be connected below it. The format of the
printed hierarchical report that is produced is shown in Figure
5-3.

5-2

UM 620344501
30 September 1990

1IJOHNSON I
+-----------------

+-----------+-------------------

ADAMS---- -----------

-------------- --------------
---------------- I

------------- --- -------- -------- -------
BROWN I ISMITH I IDAVISI

+-------------- +-------------- +--------------

Figure 5-3 Format of a Printed Hierarchical Report

The table used as the source of the data is shown in Figure

5-4.
+-------------+----------------
I supervisor I Name I
+-------------+----------------

------ Johnson
Johnson Adams
Johnson Greene
Adams Brown
Adams Smith
Greene Davis

+-------------+----------------

Figure 5-4 Empdata Table

The FDL source for the initial report is:

Create Report Orgchart

On (Startupo)

SELECT lorgchart.abox(0) .name' name
'orgchart.abox(0) .empno' empno

FROM Empdata

SELECT 'orgchart.abox(0) .refs(0) .name' name
FROM Empdata

WHERE supervisorno = lorgchart.abox(0) .empno'

* PRESENT orgchart
page

on (overflow('orgchart.abox(0)'))

page
present orgchart

5-3

UM 620344501
30 September 1990

CREATE FORM orgchart

SIZE 60 BY 23

FORM abox (* vertical with 0 spaces)
AT 2 1
SIZE 60 BY 22

CREATE FORM abox
SIZE 60 BY 22
PROMPT AT 1 23 "i"
PROMPT AT 2 2
I! AT -3-2- -
PROMPT AT 3 2 "i"
PROMPT AT 3 44
PROMPT AT 4 2
If--1

PROMPT AT 5 23 "1"
PROMPT AT 6 2 ")"

ITEM name
DISPLAY AS text
AT 3 4
SIZE 30

ITEM empno
DISPLAY AS text
AT 4 RIGHT OF name
SIZE 6
PROMPT AT LEFT "-"

FORM refs (* VERTICAL WITH 0 SPACES)
AT 8 1
SIZE 40
PROMPT AT 1 below and column 2 ")"

CREATE FORM refs

ITEM name
DISPLAY AS text
AT 1 2
SIZE 30

The initial report that is produced by the Report Writer is
shown in Figure 5-5.

5-4

UM 620344501
30 September 1990

JOHNSONI

JOHNSON
ADAMS
GREENE

<NEW PAGE>

I ADAMS ---I
+---------------------

ADAMS
BROWN
SMITH

<NEW PAGE>

I GREENEI
+---------------------

DAVIS

Figure 5-5 Format of the Initial Report

5-5

UM 620344501
30 September 1990

This initial report has the following characteristics which
are required in a report that is used as input to a hierarchical
report:

o The first line of the page is blank (the form ABox
starts on line 2 of the form Orgchart).

o The first repeating form (ABox) is the same size as the
space reserved for it on the page (Orgchart), forcing
each box to appear on a separate page (this may also be
accomplished by using an ON CHANGE condition).

o The first line of the box contains a single character
indicating the upper connection point (this character
will be blanked out for a box which does not have any
boxes above it).

o The last line of the box contains a single character
indicating the lower connection point (this character
will be blanked out for a box which does not have any
boxes below it).

o A line containing a single right parenthesis (")")
separates the box from the connection information.

o The first line of connection information contains the
name of this box.

o Following lines of connection information contain the
names of the boxes that are connected below this box,
one per line.

o The end of the connection information is indicated by
another line containing a single right parenthesis.
Anything between this line and the beginning of the next
page (e.g. the message line) will be ignored.

5.2 Accessing the Hierarchical Report Writer

The Hierarchical Report Writer is available as an
application in the IISS environment. Accessing an application
is explained in the IISS Terminal Operator Guide.

Type "SDHRWZZZZZ" in the function field of the IISS
Function Screen to display the Hierarchical Report Writer form.
Then enter the following information:

Input File Enter the name of the file that contains the
generated report to be postprocessed into a tree
structure.

5-6

UM 620344501
30 September 1990

Output File Enter the name of the file (or device) that is to
contain the reformatted report.

Width Enter the desired width of the reformatted report
pages in characters.

Depth Enter the number of lines desired on the
reformatted report pages. Alternatively, if a
zero is entered, the reformatted report will not
be divided into pages, but will instead be divided
into a number of strips which can be pasted
side-by-side to form a single large page
containing the tree.

New Pages Enter a "Y" if you have a network and want the
expansion of each box which appears more than once
to be on a page by itself rather than appearing
under the first occurrence of the box.

Invert Enter a "Y" if you want to turn the tree structure
"upside down" (i.e. the connection information
will be interpreted as the boxes above this box,
rather than the boxes below). For example, if you
have a report detailing a parts list (i.e. the
parts and subassemblies which make up each
assembly), you can get a parts usage list (i.e.
the assemblies which contain each part) by
inverting the original report.

When you are satisfied that you have entered the correct
information in these items, press the <ENTER> key and the
refornatted report will be written to the selected output file.

5-7

UM 620344501
30 September 1990

APPENDIX A

STEPS FOR EXECUTING THE RAPID APPLICATION GENERATOR

Below is the procedure to use in invoking the Rapid
Application Generator for this release. This procedure assumes
that the NTM is up and running and the user is logged on to
IISS. Refer to the Terminal Operator Guide for the procedure
for logging on to IISS. The following conventions are used to
document this section:

o Text in angle brackets is to be replaced with
appropriate information by the user.

o Single upper case words enclosed in angle brackets
represent terminal keys (e.g. <ENTER>).

o Text in upper case is to be entered as shown.

1 $ @GENAP This starts the application
generator. Respond to the
prompts as follows:

Option Number? 6
FDL File? TESTXX
CDM Username/Password? CDM/CDM
Logical Unit of Work? TESTXX
Host? VAX
Delete Obsolete Code? Y
IBM Databases? N

Replace TESTXX with TESTAP for an interactive application
or TESTRW for a report.

Steps 2 and 3 update the UI database.

2 Return to IISS and on the IISS Function Screen fill in the
fields as follows:

Function: SYSGEN
Press <ENTER>

A-I

UM 620344501
30 September 1990

3 When the initial SYSGEN screen is displayed:

Press <PF7>

When the next screen is displayed, enter the Function:

DBMOD
Press <PF7>

When the Function Definition screen is displayed, fill in
the fields as follows:

Description: Database Modification Program
AP Name: SDDBMODZZZ
Press <ENTER>

Enter the authorized role as follows:

SYSMGR
Press <ENTER>

Press <QUIT> to return to the initial SYSGEN screen.
Press <QUIT> to end SYSGEN and return to the IISS Function
To run the generated application program, perform step 13.

4 On the IISS Function Screen, fill in the item as follows:

FUNCTION: DBMOD Press <ENTER>

When the generated application is complete, another
function may be selected.

A-2 *U.S. GOVERNMENT PRINTING OFFICE: 1992 - 648-127/62252

